Finite groups that need more generators than any proper quotient

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Groups That Need More Generators than Any Proper Quotient

A structure theorem is proved for finite groups with the property that, for some integer m with m 1⁄2 2, every proper quotient group can be generated by m elements but the group itself cannot. 1991 Mathematics subject classification (Amer. Math. Soc.): 20D20.

متن کامل

Groups without Proper Isomorphic Quotient Groups

If ƒ is a homomorphism of the group G, and if g is an isomorphism of the image group G, then f g is a homomorphism of G too ; and this homomorphism is an isomorphism if, and only if, ƒ is an isomorphism. Consequently the following three properties of the group G imply each other. (1) Homomorphisms of G upon isomorphic groups are isomorphisms. (2) Homomorphisms of G upon itself are isomorphisms....

متن کامل

Finite groups have even more centralizers

For a finite group $G$‎, ‎let $Cent(G)$ denote the set of centralizers of single elements of $G$‎. ‎In this note we prove that if $|G|leq frac{3}{2}|Cent(G)|$ and $G$ is 2-nilpotent‎, ‎then $Gcong S_3‎, ‎D_{10}$ or $S_3times S_3$‎. ‎This result gives a partial and positive answer to a conjecture raised by A‎. ‎R‎. ‎Ashrafi [On finite groups with a given number of centralizers‎, ‎Algebra‎ ‎Collo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics

سال: 1998

ISSN: 0263-6115

DOI: 10.1017/s1446788700001312